

# Алгоритм подачи заявки на конкурс грантового финансирования.

- 1. *Инициатор* подает заявку согласно требованиям конкурсной документации;
- 2. Руководитель лаборатории согласует наличие необходимого оборудования, стоимость (заработная плата персонала лаборатории, затраты на материалы и амортизацию оборудования) и возможность выполнения исследований по заявке в его лаборатории;
- 3. Начальник ФЭО согласует затраты университета по проекту в полном объеме;
- 4. *Проректор по НРиИ* согласует возможность реализации данного проекта на базе университета;
- 5. Первый проректор согласует возможность реализации данного проекта во взаимодействии со всеми структурными подразделениями университета;
- 6. Ректор утверждает заявку на конкурс грантового финансирования.

Вносит:

Проректор по НРиИ

О.Д. Гавриленко

<u>19'</u> 11 20<u>18</u> года

# Правила подачи заявки на конкурс по грантовому, программноцелевому и др. финансированию

Заявка на конкурс должна быть оформлена согласно требуемой Конкурсной документацией. При оформлении заявки следует учитывать следующие пункты:

- 1. При составлении календарного плана все пункты должны прописываться четко, детально описываться все этапы, задачи и запланированные работы, обосновать их значимость.
- 2. При составлении статьи бюджета расходы должны быть прописаны целесообразно с обоснованием всех затрат.
- 3. По командировкам должны быть прописаны цели и задачи. Командировочные расходы подвердить соответствующими документами.
- 4. Расходы на закуп оборудования, товаров и услуг (если они предусмотрены) должны быть прописаны согласно Положению о закупе товаров, оборудовании и услуг.
- 5. Заявка должна быть предварительно согласована с руководителями ЦОР «Veritas», УПЦ практико-ориентированной подготовки FUTURUM. Руководителям ЦОР «Veritas», УПЦ практико-ориентированной подготовки FUTURUM необходимо предоставить список оборудований, на котором будут проводиться исследования, смету расходов. В смете расходов обязательно должны быть обозначены следующие статьи:
- «Материалы и комплектующие» в этой статье расходов должны быть указаны материалы и комплектующие, необходимые при выполнении анализов на указанном в заявке оборудовании.
- «Услуги» в этой статье расходов должны быть указаны услуги на выполнение частичной модернизации используемого оборудования.
- В статье заработная плата необходимо предусмотреть оплату сотрудникам ЦОР «Veritas», УПЦ практико-ориентированной подготовки FUTURUM за выполнение необходимых анализов на указанном в заявке оборудовании.
- 6. В научно-организационном сопровождении должны быть обязательно публикации в журналах с ненулевым импакт-фактором, журналы входящий в базу данных РИНЦ, Scopus, Web of Science. Желательно получение охранных документов.
- 7. При составлении состава исследовательской группы должны быть прописаны должностные обязанности каждого исполнителя. В составе исполнителей должны быть молодые ученые, PhD-докторанты, магистранты.
- 8. При составлении раздела «Ожидаемые результаты» желательно предусмотреть дальнейшую коммерциализацию проекта.

9. После выполнения всех выше перечисленных пунктов все необходимые документы согласовать в соответствии с утвержденным алгоритмом подачи заявки на конкурс грантового финансирования.

A STATE OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS OF THE

Вносит:

Руководитель ОКТ

Окасов Д.Е.

7 2018 г.

# ЗАЯВКА на участие в конкурсе на грантовое финансирование

#### 1.ОБЩАЯ ИНФОРМАЦИЯ

- **1. Наименование темы проекта:** «Разработка оптико-электронных (лазерных) конструкций для тренировочных стрельб танка Т-72»
  - 2. ИРН проекта
- 3. Наименование приоритетного направления развития науки, по которому подается заявка: 1) технологическое совершенствование и модернизация вооружения и военной техники
- 4. Наименование специализированного научного направления, по которому подается заявка, вид исследования: прикладные
- **5.** Предполагаемые даты начала проекта и его продолжительность: 01.01.2019г. 31.12.2021г.
- 6. Общая запрашиваемая сумма грантового финансирования (на весь срок реализации Проекта и по годам, в тыс. тенге): на весь срок реализации Проекта —тыс. тенге (в первый год —тыс. тенге, во второй год —тыс. тенге, в третий год —тыс. тенге).

#### 2.ОПИСАНИЕ ПРОЕКТА

#### 2.1 Вводная часть

Научный руководитель проекта Титов Дмитрий Николаевич, кандидат технических наук, старший преподаватель кафедры «Приборостроение и автоматизация технологических процессов» ВКГТУ им. Д.Серикбаева. Область научных интересов связана с разработкой автоматизированных систем управления, оптоэлектроники и лазерных технологий, энергоэффективных систем контроля и управления.

Соруководитель проекта - полковник Манцуров Олег Александрович, начальник военной кафедры Восточно-Казахстанского государственного технического университета имени Д. Серикбаева.

Идея проекта заключается в изготовлении оптико-электронных конструкций для применения их в танке Т-72, использование которых позволит повысить точность выверки нулевой линии прицеливания и производить учебно-тренировочные стрельбы без применения боеприпасов.

## 2.2 Цель проекта

Создание оптико-электронных конструкций для применения их в танке Т-72 повысить точность выверки нулевой линии прицеливания, а лазерная оптико-электронная система тренировочной стрельбы должна снизить объем применения (расход) боеприпасов при проведении учебных (тренировочных) стрельб.

## 2.3 Задачи проекта

- 1. Изучение технологий выверки нулевой линии прицеливания танка Т-72. Разработка принципов построения прицела на базе имеющегося оборудования, научных кадров и научно-технических достижений ВКГТУ им. Д.Серикбаева.
- 2. Изучение технологий применения лазерной техники при проведении тренировочных стрельб из вооружения танка. Разработка принципов построения оборудования на базе имеющегося оборудования, научных кадров и научно-технических достижений ВКГТУ им. Д.Серикбаева.
- 3. Изучение особенностей устройства (конструкций) орудий и прицельных приспособлений танков и других образцов бронетанкового вооружения и техники, для учета их конструкции при проектировании оптико-электронных систем.

- 4. Исследование характеристик лазеров представленных на рынке, с целью определения необходимой для применения в системе.
  - 5. Моделирование применения лазера для расчета оптической системы.
- 6. Разработка конструкции устройства для выверки нулевой линии прицеливания танка.
- 7. Разработка конструкции лазерной оптико-электронной системы тренировочной стрельбы монтируемой в танке.
- 8. Разработка конструкции электронной мишени для лазерной оптико-электронной системы тренировочной стрельбы.
- 9. Изготовление опытного образца устройства для выверки нулевой линии прицеливания танка.
- 10. Изготовление опытного образца лазерной оптико-электронной системы тренировочной стрельбы.
- 11. Изготовление опытного образца электронной мишени для лазерной оптико-электронной системы тренировочной стрельбы.
- 12. Оптимизация работы лазерной оптико-электронной системы тренировочной стрельбы и электронной мишени.
- 13. Проведение натурных испытаний разработанного оборудования и разработка рекомендаций по его применению.

## Ожидаемые результаты:

- 1. Создание образца устройства для выверки нулевой линии прицеливания танка.
- 2. Создание опытного образца лазерной оптико-электронной системы тренировочной стрельбы.
- 3. Создание образца электронной мишени для лазерной оптико-электронной системы тренировочной стрельбы.
- 4. Конструкторская документация опытного образца устройства для выверки нулевой линии прицеливания танка
- 5. Конструкторская документация опытного образца лазерной оптико-электронной системы тренировочной стрельбы и электронной мишени.
- 6. Программное обеспечение управления опытным образцом лазерной оптико-электронной системы тренировочной стрельбы и электронной мишенью.
  - 7. Проведение натурных экспериментов и формулировка рекомендаций.
  - 8. Получение патентов по результатам проекта.
- 9. Публикация в журналах с импакт-фактором, индексируемом в агентстве Thomson Reuters.

## 2.4 Научная новизна и значимость проекта

Предпосылки к разработке Проекта.

- 1. большая трудоемкость процессов, применяемых при выверке прицельных приспособлений;
- 2. приложение значительных физических усилий членами экипажа при выемке и установке ударного механизма клина затвора в условиях ограниченного пространства в башне танка;
- 3. неудобство действий членов экипажа при совмещении перекрестий нитей на дульном срезе ствола пушки с контрольной точкой при наблюдении через трубку выверки ТВ-115 с одновременным перемещением орудия по вертикали и горизонтали;
- 4. возможность получения травм членами экипажа при проведении данных операций;
- 5. необходимость в удобных в использовании приспособлений, которые позволят сократить время на подготовку вооружения танка к стрельбе, тем самым будет повышена боеготовность, как отдельного танка, так и подразделения в целом.

- 6. Расход боеприпасов при проведении учебных стрельб. Новизна и значимость.
- 1. Использование современных лазерных систем для воспроизведения траектории полета снаряда танка.
- 2. Математическая модель установки электронной мишени с учетом корректировки полета снаряда относительно лазерного луча.
- 3. Сокращение расхода боеприпасов при проведении учебных (на тренировочные) стрельб.
- 4. Повышение уровня боеготовности танковых подразделений (танкистов) за счет возможности практически неограниченного количества электронно-лазерных выстрелов.

Так как данная тема относится с обороной отрасли, то информация о подобных системах является закрытой, поэтому аналогов в открытой печати не установлено.

**Научная новизна** проекта заключается в том, что в результате проведения научнотехнических работ будет:

- 1. Создан образец устройства для выверки нулевой линии прицеливания танка.
- 2. Создан опытный образец лазерной оптико-электронной системы тренировочной стрельбы.
- 3. Создан образец электронной мишени для лазерной оптико-электронной системы тренировочной стрельбы.
- 4. Разработана конструкторская документация опытного образца устройства для выверки нулевой линии прицеливания танка
- 5. Разработана конструкторская документация опытного образца лазерной оптикоэлектронной системы тренировочной стрельбы и электронной мишени.
- 6. Разработано программное обеспечение управления опытным образцом лазерной оптико-электронной системы тренировочной стрельбы и электронной мишенью.

# 3. МЕТОДЫ ИССЛЕДОВАНИЯ И ЭТИЧЕСКИЕ ВОПРОСЫ

Методология исследования базируется на системном подходе к обоснованию комплекса теоретических и экспериментальных результатов, полученных при помощи методов математического и статистического анализа, математического и физического моделирования, светотехнических и фотометрических методов. В качестве инструментов моделирования и разработки программного обеспечения применяются современные пакеты прикладных программ: DIALux, MATLAB, Solid Works, Autodesk Inventor, SCADA TRACE MODE. Экспериментальные исследования проводятся с использованием современных электроизмерительных и электронных приборов.

При выполнении Проекта предусмотрен резерв трудовых ресурсов и оборудования.

Реализация проекта будет осуществляться на территории Казахстана силами Восточно-Казахстанского государственного технического университета им. Д. Серикбаева, под руководством научного руководителя Титова Д.Н., к.т.н., учеными кафедры «Приборостроение и автоматизация технологических процессов» и сотрудниками военной кафедры университета.

Исполнителями данного проекта являются ученые (доктора PhD и кандидаты наук) и высококвалифицированный инженерный персонал университета.

Планируется подать 1 заявку на патент, 1 заявку на свидетельство объекта интеллектуальной собственности, что автоматически обеспечивает соблюдение принципов и научной этики и стандартов интеллектуальной честности.

Достижимость будет обеспечиваться проведением комплексных исследований, включающих сбор, анализ и обобщение фондовых материалов прошлых лет, с использованием литературных данных, в том числе и зарубежных публикаций, получение

нового материала в результате разработки оптико-электронных систем для танка Т-72. По результатам исследований будет составлен отчет, подготовлены научные статьи для публикаций в журналах с ненулевым импакт-фактором. Предполагается участие в научных конференциях, симпозиумах и совещаниях международного и республиканского уровнях. Поэтому планируемые цели проекта являются потенциально достижимыми.

#### 4. ПЛАНИРОВАНИЕ И УПРАВЛЕНИЕ ПРОЕКТОМ

4.1 Описание работ и сроков занятости в Проекте членов исследовательской группы

Этап 1. Разработка принципов функционирования устройства для выверки нулевой линии прицеливания танка, научных кадров и научно-технических достижений ВКГТУ им. Д.Серикбаева.

Выполняют – 1 ведущий научный сотрудник, 2 старших научных сотрудника, 2 научных сотрудника, 1 старший инженер, 2 сотрудника военной кафедры.

Этап включает:

- Проведение литературного обзора, патентного поиска по теме проекта, анализа перспективных разработок в области создания разрабатываемых систем.
- Разработка технологий изготовления устройства для выверки нулевой линии прицеливания танка.
  - Представление результатов на международных конференциях и в публикациях
  - Разработка промежуточного отчета по этапу.

Этап 2. Изготовление устройства для выверки нулевой линии прицеливания танка.

Выполняют – 1 ведущий научный сотрудник, 2 старших научных сотрудника, 2 научный сотрудник, 1 техник, 1 инженер, 2 сотрудника военной кафедры.

Этап включает:

- Проектирование конструкции.
- Консультации с зарубежными учеными.
- Закуп необходимого оборудования и материалов.
- Изготовление элементов устройства.
- .Разработка промежуточного отчета по этапу.

Этап 3. Испытание устройства для выверки нулевой линии прицеливания танка. Выполняют — 1 ведущий научный сотрудник, 3 старших научных сотрудника, 3 научных сотрудника, 4 сотрудника военной кафедры.

- Сборка устройства
- Проведение испытаний устройства и получение его оценочных характеристик.
- Анализ полученных результатов.
- Разработка промежуточного отчета по этапу.

Этап 4. Внесение изменений в конструкцию устройства для выверки нулевой линии прицеливания танка

Выполняют — 1 ведущий научный сотрудник, 2 старших научных сотрудника, 2 научных сотрудника, 1 старший инженер, 1 инженер, 2 техника, 2 сотрудника военной кафедры.

- На основании полученного анализа результатов, изменение конструкторской документации.
  - Изготовление измененных элементов устройства.
  - Разработка промежуточного отчета по этапу.

Этап 5. Повторное испытание устройства для выверки нулевой линии прицеливания танка.

Выполняют — 1 ведущий научный сотрудник, 3 старших научных сотрудника, 2 научных сотрудника, 1 старший инженер, 1 инженер, 1 техник, 4 сотрудник военной кафедры.

- Сборка устройства с внесенными изменениями.
- Повторное проведение испытаний устройства и получение его оценочных характеристик.
  - Анализ полученных результатов.
  - Разработка промежуточного отчета по этапу.

Этап 6. Разработка технического регламента и рекомендаций по использованию устройства для выверки нулевой линии прицеливания танка.

Выполняют – 2 старших научных сотрудника, 2 научных сотрудника, 1 старший инженер, 1 инженер, 5 техников, 2 сотрудника военной кафедры.

- Разработка технического регламента.
- Разработка рекомендаций по использованию.
- Разработка промежуточного отчета по этапу.

Этап 7. Разработка принципов функционирования лазерной оптико-электронной системы тренировочной стрельбы и электронной мишени, научными кадрами ВКГТУ им. Д.Серикбаева.

Выполняют – 1 ведущий научный сотрудник, 2 старших научных сотрудника, 2 научных сотрудника, 1 старший инженер. Этап включает:

- Проведение литературного обзора, патентного поиска по теме проекта, анализа перспективных разработок в области создания разрабатываемых систем.
- Разработка технологий изготовления лазерной оптико-электронной системы тренировочной стрельбы танка.
  - Представление результатов на международных конференциях и в публикациях
  - Разработка промежуточного отчета по этапу.

Этап 8. Изготовление лазерной оптико-электронной системы тренировочной стрельбы и электронной мишени.

Выполняют – 1 ведущий научный сотрудник, 2 старших научных сотрудника, 4 научных сотрудника, 2 техника, 2 инженера, 1 программист. Этап включает:

- Проектирование конструкции.
- Консультации с зарубежными учеными.
- Закуп необходимого оборудования и материалов.
- Изготовление элементов устройства.
- .Разработка промежуточного отчета по этапу.

Этап 9. Испытание лазерной оптико-электронной системы тренировочной стрельбы и электронной мишени.

Выполняют – 1 ведущий научный сотрудник, 2 старших научных сотрудника, 6 научных сотрудника, 2 техника, 2 инженера, 1 программист.

- Сборка устройства
- Проведение испытаний системы и получение его оценочных характеристик.
- Анализ полученных результатов.
- Разработка промежуточного отчета по этапу.

Этап 10. Внесение изменений в конструкцию лазерной оптико-электронной системы тренировочной стрельбы и электронной мишени.

Выполняют – 1 ведущий научный сотрудник, 3 старших научных сотрудника, 4 научных сотрудника, 1 старший инженер, 4 инженера, 2 техника.

- На основании полученного анализа результатов, изменение конструкторской документации.
  - Изготовление измененных элементов системы и мишени.

– Разработка промежуточного отчета по этапу.

# Этап 11. Повторное испытание лазерной оптико-электронной системы тренировочной стрельбы и электронной мишени

Выполняют – 1 ведущий научный сотрудник, 3 старших научных сотрудника, 4 научных сотрудника, 1 старший инженер, 4 инженера, 2 техника.

- Сборка системы и мишени с внесенными изменениями.
- Повторное проведение испытаний системы и получение его оценочных характеристик.
  - Анализ полученных результатов.
  - Разработка промежуточного отчета по этапу.

# Этап 12. Разработка технического регламента и рекомендаций по использованию лазерной оптико-электронной системы тренировочной стрельбы и электронной мишени.

Выполняют -2 старших научных сотрудника, 2 научных сотрудника, 1 старший инженер, 2 инженера, 5 техников.

- Разработка технического регламента.
- Разработка рекомендаций по использованию.
- Разработка заключительного отчета НИР.

# 4.2 План работ, включающий этапы проекта

Поставленные задачи и их обоснование приведены в таблице 1 и представлены виде диаграммы Ганта на рисунке 1.

Таблица 1 – Типовой календарный план работ

| No  | Наименование задач, мероприятий                                                                                                                 | Длит<br>ельно | Начало<br>выполнен      | ,                                | ции проекта, с<br>ы реализации г |      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|----------------------------------|----------------------------------|------|
| u/u | по реализации задач проекта                                                                                                                     |               | ия работ<br>(дд/мм/гг.) | 2019                             | 2020                             | 2021 |
| 1   | Разработка принципов функционирования устройства для выверки нулевой линии прицеливания танка                                                   |               | 03.01.2019              | принципы<br>функционир<br>ования |                                  |      |
| 1.1 | Проведение литературного обзора, патентного поиска по теме проекта, анализа перспективных разработок в области создания разрабатываемых систем. |               |                         | Литературны<br>й обзор           |                                  |      |
| 1.2 | Разработка технологий изготовления устройства для выверки нулевой линии прицеливания танка.                                                     |               |                         | Технология                       |                                  |      |
| 1.3 | – Представление результатов на международных конференциях и в публикациях                                                                       |               |                         | Доклады на конференция х         |                                  |      |
| 1.4 | Разработка промежуточного отчета по этапу                                                                                                       |               |                         | Отчет                            |                                  |      |
| 2   | Изготовление устройства для выверки нулевой линии прицеливания танка.                                                                           | 3             | 01.02.2018              | Изготовлен<br>иое<br>устройство  |                                  |      |
| 2.1 | Проектирование конструкции.                                                                                                                     |               |                         | Чертежи и<br>схемы               |                                  |      |
| 2.2 | Консультации с зарубежными учеными.                                                                                                             |               |                         | Консультаци<br>и                 |                                  |      |
| 2.3 | Закуп необходимого оборудования и материалов.                                                                                                   |               |                         | Оборудовани<br>е и               | -                                |      |

|          |                                                                                                                             | Длит<br>ельно          | Начало                              | ·                                  | ации проекта,<br>ъ реализации |      |
|----------|-----------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------|------------------------------------|-------------------------------|------|
| №<br>п/п | Наименование задач, мероприятий по реализации задач проекта                                                                 | сть (в<br>меся<br>цах) | выполнен<br>ия работ<br>(дд/мм/гг.) | 2019                               | 2020                          | 2021 |
|          |                                                                                                                             |                        |                                     | материалы                          |                               |      |
| 2.4      | Изготовление элементов<br>устройства.                                                                                       |                        |                                     | Элементы<br>устройства             |                               |      |
| 2.5      | Разработка промежуточного отчета по этапу.                                                                                  |                        |                                     | Отчет                              |                               |      |
| 3        | Испытание устройства для выверки нулевой линии прицеливаниятанка.                                                           |                        | 01.03.2018                          | Устройство и результаты испытаний  |                               |      |
| 3.1      | Сборка устройства                                                                                                           |                        |                                     | Устройство                         |                               |      |
| 3.2      | Проведение испытаний устройства и получение его оценочных характеристик.                                                    |                        |                                     | Результаты<br>испытаний            |                               |      |
| 3.3      | Анализ полученных результатов.                                                                                              |                        |                                     | Результат                          |                               |      |
| 3.4      | Разработка промежуточного отчета по этапу.                                                                                  |                        |                                     | анализа<br>Отчет                   |                               |      |
| 4        | Внесение изменений в конструкцию устройства для выверки нулевой линии прицеливания танка                                    |                        |                                     | Измененная конструкция устройства  |                               |      |
| 4.1      | Изменение конструкторской документации.                                                                                     |                        |                                     | Конструктор<br>ская<br>документаци |                               |      |
| 4.2      | Изготовление измененных элементов устройства.                                                                               |                        |                                     | я<br>Элементы<br>устройства        |                               |      |
| 4.3      | Разработка промежуточного отчета по этапу.                                                                                  |                        |                                     | Отчет                              |                               |      |
| 5        | Повторное испытание устройства для выверки нулевой линии прицеливания танка.                                                |                        |                                     | Результаты<br>испытаний            |                               |      |
| 5.1      | Сборка устройства с внесенными изменениями.                                                                                 |                        |                                     | Устройство                         |                               |      |
| 5.2      | Повторное проведение испытаний устройства и получение его оценочных характеристик.                                          |                        |                                     | Результаты<br>испытаний            |                               |      |
| 5.3      | Анализ полученных результатов.                                                                                              |                        |                                     | Результаты<br>анализа              |                               |      |
| 5.4      | Разработка промежуточного отчета по этапу                                                                                   |                        |                                     | Отчет                              |                               |      |
| 6        | Разработка технического регламента и рекомендаций по использованию устройства для выверки нулевой линии прицеливания танка. |                        |                                     |                                    |                               |      |
| 6.1      | Разработка технического регламента.                                                                                         |                        |                                     | Технический<br>регламент           |                               |      |
| 6.2      | Разработка рекомендаций по использованию.                                                                                   |                        |                                     | Рекомендаци и                      |                               |      |
| 6.3      | Разработка промежуточного отчета по этапу.                                                                                  |                        |                                     | Отчет                              |                               |      |
| 7        | Разработка принципов<br>функционирования лазерной                                                                           |                        |                                     | Принципы<br>функционир             |                               |      |

| 20              | Наименование задач, мероприятий                                                                                                                 | Длит<br>ельно          | Начало                        | Годы реализа результать         | ции проекта, о<br>преализации |      |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|---------------------------------|-------------------------------|------|
| <b>№</b><br>п/п | по реализации задач проекта                                                                                                                     | сть (в<br>меся<br>цах) | выполнен ия работ (дд/мм/гг.) | 2019                            | 2020                          | 2021 |
|                 | оптико-электронной системы тренировочной стрельбы и электронной мишени                                                                          |                        |                               | ования                          |                               |      |
| 7.1             | Проведение литературного обзора, патентного поиска по теме проекта, анализа перспективных разработок в области создания разрабатываемых систем. |                        |                               | Литературны<br>й обзор          |                               |      |
| 7.2             | Разработка технологий изготовления лазерной оптико-<br>электронной системы тренировочной стрельбы танка.                                        |                        |                               | Технология                      |                               |      |
| 7.3             | Представление результатов на международных конференциях и в публикациях                                                                         |                        |                               | Доклады на конференция х        |                               |      |
| 7.4             | Разработка промежуточного отчета по этапу                                                                                                       |                        |                               | Отчет                           |                               |      |
| 8               | Изготовление лазерной оптико-<br>электронной системы<br>тренировочной стрельбы и<br>электронной мишени.                                         |                        |                               | Изготовленн<br>ое<br>устройство |                               |      |
| 8.1             | Проектирование конструкции                                                                                                                      |                        |                               | Чертежи и<br>схемы              |                               |      |
| 8.2             | Консультации с зарубежными учеными                                                                                                              |                        |                               | Консультаци<br>и                |                               |      |
| 8.3             | Закуп необходимого оборудования и материалов.                                                                                                   |                        |                               | Оборудовани<br>е и<br>материалы |                               |      |
| 8.4             | Изготовление элементов системы                                                                                                                  |                        |                               | Элементы<br>устройства          |                               |      |
| 8.5             | Разработка промежуточного отчета по этапу                                                                                                       |                        |                               | Отчет                           |                               |      |
| 9               | Испытание лазерной оптико-<br>электронной системы<br>тренировочной стрельбы и<br>электронной мишени.                                            |                        |                               | Испытания                       |                               |      |
| 9.1             | Сборка устройства                                                                                                                               |                        |                               | Собранная<br>система            |                               |      |
|                 | Проведение испытаний системы и получение его оценочных характеристик.                                                                           |                        |                               | Результаты<br>испытаний         |                               |      |
| 9.2             | Анализ полученных результатов.                                                                                                                  |                        |                               | Анализ                          |                               |      |
| 9.3             | Разработка промежуточного отчета по этапу                                                                                                       |                        |                               | Отчет                           |                               |      |
| 10              | Внесение изменений в конструкцию лазерной оптико- электронной системы тренировочной стрельбы и электронной мишени.                              |                        |                               | Измененная<br>конструкция       |                               |      |
| 10.1            | На основании полученного анализа результатов, изменение конструкторской документации.                                                           |                        |                               | Конструктор ская документаци я  |                               |      |
| 10.2            | Изготовление измененных элементов системы и мишени.                                                                                             |                        |                               | Элементы<br>системы             | ,                             |      |

| No   | Наименование задач, мероприятий                                                                                                  | Длит<br>ельно          | Начало выполнен         | · ·                     | ации проекта,<br>ъ реализации |                           |
|------|----------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|-------------------------|-------------------------------|---------------------------|
| n/n  | по реализации задач проекта                                                                                                      | сть (в<br>меся<br>цах) | ия работ<br>(дд/мм/гг.) | 2019                    | 2020                          | 2021                      |
| 10.3 | Разработка промежуточного отчета по этапу.                                                                                       |                        |                         | Отчет                   |                               |                           |
| 11   | Повторное испытание лазерной оптико-электронной системы тренировочной стрельбы и электронной мишени                              |                        |                         | Результаты<br>испытаний |                               |                           |
| 11.1 | Сборка системы и мишени с внесенными изменениями.                                                                                |                        |                         | Устройство              |                               |                           |
| 11.2 | Повторное проведение испытаний системы и получение его оценочных характеристик.                                                  |                        |                         | Результаты<br>испытаний |                               |                           |
| 11.3 | Анализ полученных результатов.                                                                                                   |                        |                         | Результаты<br>анализа   |                               |                           |
| 11.4 | Разработка промежуточного отчета по этапу.                                                                                       |                        |                         | Отчет                   |                               |                           |
| 12   | Разработка технического регламента и рекомендаций по использованию лазерной оптико- электронной системы                          |                        |                         |                         |                               |                           |
|      | тренировочной стрельбы и электронной мишени.                                                                                     |                        |                         |                         |                               |                           |
|      | <ul> <li>Разработка</li> <li>промежуточного отчета по этапу.</li> <li>Разработка</li> <li>заключительного отчета НИР.</li> </ul> |                        |                         |                         |                               |                           |
| 12.1 | Разработка технического регламента.                                                                                              |                        |                         |                         |                               | Технически<br>й регламент |
| 12.2 | Разработка рекомендаций по использованию.                                                                                        |                        |                         |                         |                               | Рекомендац<br>ии          |
| 12.3 | Разработка заключительного<br>отчета НИР                                                                                         |                        |                         |                         |                               | Отчет                     |



# **Ристнок 1**. Диаграмма Ганта для задач, выполняемых в проекте

# 4.3 Обоснование общей стоимости Проекта

1. Оплата труда исследовательской группы (заработная плата, включая начисление всех налогов и других обязательных платежей в бюджет; надбавки, установленные законодательством Республики Казахстан). – 72 085 тыс. тенге

# (Количество членов группы см. н. 5)

2. Оплата командировочных расходов, включая затраты на участие в конференциях связанные с Проектом, собраниями и визитами в пределах страны или за рубежом по нормам, установленным постановлением Правительства РК – 14 610 тыс. тенге

Запланированы поездки на весь период исследования в:

- Венгия, г.Секешферервар, университет Обуда. 6 командировок ориентировочно 820000 тг каждая(2 поездки в год).
- Россия, г. Новосибирск, НГТУ 12 командировок ориентировочно 400000 тг каждая (4 поездки в год).
- Россия, г. Новосибирск, НГТУ 9 командировок ориентировочно 410000 тг каждая (3 поездки в год)
- Россия, г. Омск, Институт военно-технического образования при ОМГТУ 3 поездки ориентировочно 400000 тг каждая (1 поездка в год).

Цели командировок: Получение консультаций, проведение исследований и участие в международных конференциях. Все расходы согласно Правил возмещения расходов на служебные командировки за счет бюджетных средств, в том числе в иностранные государства.

3. Оплата услуг сторонних организаций (национальных и инженерных лабораторий коллективного пользования, услуги прочих организаций, необходимые для выполнения Проекта), оплата услуг консультантов (затраты на консультационные услуги, оказываемые зарубежными учеными, инженерами и другими специалистами) и организационные взносы для участия в конференциях. — 8 000 тыс. тенге.

Работы по обработке материалов и металла будут проводиться в сторонних организациях. Имеются предварительные договоренности.

4. Приобретение расходных материалов (металлические листы из алюминия, нержавеющей стали. фольгированный текстолит, изоляционные материалы, экранирующие материалы, светопоглощающие, и др.), инструментов, различные экранированные и неэкранированные провода, кабели, разъёмы и др.) необходимых для проведения исследований – 4 900 тыс. тенге

Также необходимо приобретение ГСМ для выезда танка на полигон для проведения испытаний (не менее 9 выездов).

- 5. Приобретение оборудования и программного обеспечения 9 915 тыс.тенге, наиболее порогостоящие
  - Лазер.
  - Лазер.
  - Шаговый двигатель
  - Фото датчик резистивный
  - Фото датчик полупроводниковый
  - Радио компоненты (микросхемы, резисторы, конденматоры и т.д.)
- Трубки холодной пристренки ТХП-7-80 1 mт. 10000 руб., ТХП-12-80 mr.,10000 руб, ТХП-23-80 1 mт., 10000 руб.
  - Трубка выверки ТВ-115 1 шт, 20000 руб.
  - Прибор выверки УПВ-125-01 1 шт., 50000 руб.
- 6. Оплата на научно-организационное сопровождение (публикации, аналитика, расходы на получение охранных документов, патентование). -1000 тыс. тенге

7. Эксплуатационные расходы на содержание оборудования и техники, используемых для реализации исследований. **600 тыс. тенге** 

Смета расходов с расшифровкой по каждой статье расходов на каждый год реализации проекта приведена в таблице 2.

Таблица 2 - Смета расходов

| Наименование статей расходов                         | Расходы на<br>2018 год в | Расходы на<br>2019 год в | Расходы на<br>2020 год в | Расходы на<br>весь срок              |
|------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------|
|                                                      | тыс. тенге               | тыс. тенге               | тыс. тенге               | реализации<br>Проекта в тыс<br>тенге |
| Заработная плата                                     | 21000                    | 27085                    | 24000                    | 72085                                |
| Научные командировки                                 | 7000                     | 9000                     | 7500                     | 23500                                |
| Услуги сторонних организаций                         | 4000                     | 5000                     | 5000                     | 14000                                |
| Приобретение материалов                              | 1000                     | 1200                     | 1700                     | 3900                                 |
| Приобретение оборудования и программного обеспечения | 1600                     | 7315                     | 1000                     | 9915                                 |
| Расходы по научно-организационному сопровождению     | 200                      | 200                      | 600                      | 1000                                 |
| Аренда помещений                                     | -                        | -                        | -                        | 0                                    |
| Аренда оборудования                                  | -                        | -                        | -                        | 0                                    |
| Эксплуатационные расходы оборудования и техники      | 200                      | 200                      | 200                      | 600                                  |
| Итого                                                | 35000                    | 50000                    | 40000                    | 125000                               |

## 5. ИССЛЕДОВАТЕЛЬСКАЯ ГРУППА

5.1 Описание состава исследовательской группы, их позиций, квалификации и направлениях работы в проекте:

# 5.1.1 Научный руководитель проекта

Научный руководитель проекта Титов Дмитрий Николаевич, кандидат технических наук (специальность 05.11.13 Приборы и методы контроля природной среды, веществ), старший преподаватель кафедры «Приборостроение и автоматизация технологических процессов» ВКГТУ им. Д.Серикбаева. Область научных интересов связана с разработкой автоматизированных систем управления, оптоэлектроники и лазерных технологий, энергоэффективных систем контроля и управления. Имеет большой опыт по разработке и внедрению электронных устройств.

Имеет более 30 публикаций из них 4 проиндексированы в Thomson Reuters и более 15 в журналах, рекомендованных комитетом по контролю в сфере образования и науки МОН РК. Издана 1 монография. Имеется 2 авторских свидетельства. За последние 5 лет - боле 10 сертификатов и дипломов. Индекс Хирша 2 по данным **Scopus**. Лучший преподаватель РК 2016 года.

- 1. Baklanov A., Zhaparova A., Titov D., Gyorok G.. Study of the Effectiveness of Switching-on LED Illumination Devices and the Use of Low Voltage System in Lighting // Acta Polytechnica Hungarica. Budapest. Volume 12. 2015. IssueNumber 5. pp 71-80.
- 2. Baklanov A., Grigoryeva S. and Titov D. The practical realization of robustness for LED lighting control systems// 11th International Forum on Strategic Technology. June 1-3, 2016, Novosibirsk, Russia, Part 2 pp.52-57.
- 3. Baklanov A., Grigoryeva S., Grigoryev Ye., Sayun V., Titov D. Analysis energy efficiency of automated control system of LED lighting. IEEE-Евразийская конференция по энергетике, приуроченная к международной выставке ASTANA EXPO-2017 Международная IEEE-Сибирская конференция по управлению и связи (SIBCON-2017) 29–30 июня 2017 г. г. Астана, Казахстан

# 5.1.2 Состав исследовательской группы

- 1) Манцуров Олег Александрович. Соруководитель, главный инженер, начальник военной кафедры ВКГТУ им. Д. Серикбаева. Воинское звание «полковник». В 1990 году окончил Иркутское высшее военное авиационное инженерное училище им. 60-летия ВЛКСМ. Участник Международных НТК ВКГТУ в 2013-2018 гг. (г. Усть-Каменогорск). Имеет 8 учебно-методических пособий по техническим дисциплинам.
- 2) Бакланов Александр Евгеньевич. Главный научный сотрудник, кандидат физикоматематических наук, ассоциированный профессор кафедры «Приборостроение и автоматизация технологических процессов» ВКГТУ им. Д.Серикбаева. Область научных интересов связана с разработкой автоматизированных систем управления, оптоэлектроники и лазерных технологий, энергоэффективных систем контроля и управления. Имеет более 120 публикаций из них 8 проиндексированы в Thomson Reuters и более 40 в журналах, рекомендованных ККСОН МОН РК. Издано 5 монографий и 1 учебное пособие. Имеется 4 авторских свидетельства и 9 свидетельств на интеллектуальную собственность. Индекс Хирша 3 по данным Thomson Reuters. Лучший преподаватель РК 2014 года. Является экспертом агенств по аккредитации НААР и НКАОКО РК.
- 3) Швец Ольга Яковлевна. Ведущий научный сотрудник. Кандидат технических наук, с 2012 доцент кафедры «Приборостроение и автоматизация технологических процессов». За время работы на кафедре участвовала в трех проектах, финансируемых МОН РК, в качестве старшего научного сотрудника. индекс Хирша = 2, 1 авторское свидетельство.
- 4) Бакланова Ольга Евгеньевна. Ведущий научный сотрудник. Кандидат физикоматематических наук, доцент РК, профессор кафедры «Математическое и компьютерное моделирование». Сертифицированный специалист ORACLE. Имеет более 170 публикаций из них 7 статей проиндексированы в БД Thomson Reuters, 12 статей в БД Scopus и более 30 в журналах, рекомендованных ККСОН МОН РК. Издано 5 монографий и 2 учебных пособия. Имеется 7 свидетельств на интеллектуальную собственность. За последние 5 лет более 20 сертификатов и дипломов. Индекс Хирша=3 по данным БД Scopus. Лучший преподаватель РК 2015 года.
- 5) Григорьева Светлана Владимировна. Доктор PhD по специальности «Автоматизация и управление», старший преподаватель кафедры «Приборостроение и автоматизация технологических процессов» ВКГТУ им. Д.Серикбаева. Тема диссертационной работы PhD «Оптимизация светодиодных систем освещения с элементами робастного управления» соответствует выбранному направлению исследования.

С 2013г. по 2015г. являлась научным сотрудником г/б НИР МОН РК по теме «Оптимизация энергопотребления в светодиодных установках совмещённого освещения с автоматизированным управлением: алгоритмы, программное обеспечение, демонстрационный макет на ЭКСПО 2017» (№ госрегистрации 0113РК00822).

Имеет более 20 публикаций по направлению проекта, из них 2 монографии,3 статьи в журналах индексированных в базах данных Thomson Reuters и Scopus с ненулевым импактфактором; 3 публикации индексируемые в базах данных Thomson Reuters и Scopus; 5 работ в изданиях рекомендуемых ККСОН МОНРК; 10 работ в сборниках международных конференций ближнего (Россия, Кыргызстан) и дальнего зарубежья (Венгрия), 1 авторское свидетельство, 1 патент на полезную модель.

6) Азаматов Багдат Нурланович Старший научный сотрудник, доктор PhD по специальности «Автоматизация и управление», Имеет более 20 публикаций. Автор 2-х монографии, 4 патентов и 2 авторских свидетельств на объект интеллектуальной собственности. Был исполнителем в госбюджетной грантовой НИР №0113РК00819 на тему: «Разработка новой автоматизированной технологии гидрозолоудаления на типичных ТЭС и предприятиях горнодобывающей промышленности Казахстана с использованием гидроциклонов с регулируемой геометрией».

- 7) Баяхатов Арман Бауржанович. Программист. Начальник отдела сетевых технологий ВКГТУ им.Д.Серикбаева, магистр по специальности «Автоматизация и управление».
- 8) Кошубаев Жандос Сержанович. Научный сотрудник. Докторант специальности «Автоматизация и управления», тема диссертации «Интеллектуальное управление освещением с помощью встроенной компьютерной системы». Магистр по специальности «Приборостроение».
- 9) Алимханова Аслима Женисовна. Научный сотрудник. Докторант специальности «Автоматизация и управления», тема диссертации «Система автоматизированного управления жизнеобеспечения с использованием технологии VLC». Магистр по специальности «Автоматизация и управление». С 2006г. старший преподаватель кафедры «Приборостроение и автоматизация технологических процессов» ВКГТУ им. Д.Серикбаева. По теме исследования имеет 2 публикации.
- 10) Найзабаева Асель Айбаровна. Научный сотрудник. Докторант специальности «Автоматизация и управления», тема диссертации «Контроль и управления системы энергопотребления с использованием нейронных сетей». Магистр по специальности «Автоматизация и управление». Преподавательский стаж 11 лет. С 2016г. старший преподаватель кафедры «Приборостроение и автоматизация технологических процессов» ВКГТУ им. Д.Серикбаева. Имеет 2 публикации по теме исследования
- 11) Елеусизова Карлыгаш Алибековна. Научный сотрудник. Докторант специальности «Автоматизация и управления». Магистр специальности «Приборостроение». С 2006г. преподаватель кафедры «Приборостроение и автоматизация технологических процессов» ВКГТУ им. Д.Серикбаева. Имеет 2 публикации по теме исследования, в том числе 1 публикация в научном журнале, рекомендованном ККСОН МОН РК.
- 12) Купенов Махамбет Жанузахович. Старший инженер, старший преподаватель военной кафедры ВКГТУ им. Д. Серикбаева. Воинское звание «подполковник запаса». Закончил Киевское высшее танковое инженерное училище по специальности «Электроспецоборудование и автоматика гусеничных и колесных машин», Военную академию ВС РК в 2000 году. Участник Международных НТК. Имеет 4 публикации в научном журнале, рекомендованном ККСОН МОН РК.
- 13) Лобанов Виктор Дмитриевич. Старший инженер, старший преподаватель военной кафедры ВКГТУ им. Д. Серикбаева. Воинское звание «подполковник запаса». В 1980 году окончил Алма-Атинское высшее общевойсковое командное училище, инженер по эксплуатации колесно-гусеничной техники, офицер с высшим образованием, курсы повышения квалификации при НУО МО РК 2016г. Имеет 4 публикации в научном журнале, рекомендованном ККСОН МОН РК.
- 14) Григорьев Егор Аркадьевич. Инженер. Инженер по автоматизации ТОО «Айрон-Техник». Магистр по направлению «Электроника и наноэлектроника» (ТУСУР). Исполнитель г/б НИР МОНРК «Оптимизация энергопотребления в светодиодных установках совмещённого освещения с автоматизированным управлением: алгоритмы, программное обеспечение, демонстрационный макет на ЭКСПО 2017» (2013-2015гг). Имеет 10 публикаций по теме проекта, в том числе 2 публикации индексируемые в базах данных Thomson Reuters и Scopus с ненулевым импакт-фактором. Участник Международных НТК Венгрии, России и Казахстана.
- 15) Мәуліт Алмасбек. Инженер. Магистр по программе двойного образования по специальности «Приборостроение» (ВКГТУ) и по специальности «Промышленная электроника (ТУСУР). Имеет 2 публикации по теме проекта. Участник Международных НТК Венгрии, России и Казахстана.
- 16) Рыжкова Елена Владимировна. Техник. Магистрант 2 курса по направлению «Математическое и компьютерное моделирование», ВКГТУ им.Д.Серикбаева. Участник Международных НТК Венгрии, России и Казахстана.

- 17) Баукен Олжас Муратбекулы. 25.04.1985 года рождения. ВРИД начальника цикла общевоенных дисциплин заместитель начальника военной кафедры ВКГТУ им. Д. Серикбаева. Воинское звание «майор». В 2006 году окончил Актюбиский военной институт Сил Воздушной обороны (г. Актобе) по специальности «Техническая эксплуатация и ремонт радиоэлетронного оборудования авиационной техники», в 2012 году окончил магистратуру Московского государственного технического университета им. Н.Э. Баумана (г. Москва РФ) по направлению «Информатика и системы управления». Имеет одну статью в научнопрактической конференции в 2018 году и разработал четыре учебно-методического пособия по преподаваемой специальности.
- 18) Мусаханов Адембек Катиетович. Инструктор-сержант, воинское звание «прапорщик запаса». Окончил СПТУ-17 г. Зайсан ВКО в 1982 г. Образование среднее-специальное, специальность «машинист-гракторист широкого профиля».
- 19) Амиров Таскын Ураскулович. 10.07.1971 года рождения. Инструктор-сержант. Воинское звание «старшина запаса». Образование среднее.

# 5.1.3 Светения об основных публикациях и имеющихся патентах, авторских свидетельств членов исследовательской группы проекта

- 1. A. Zhaparova, A. Baklanov, D. Titov, G. Gyorok. Study of the Effectiveness of Switching-on LED Illumination Devices and the Use of Low Voltage System in Lighting // Journal of Applied Sciences ActaPolytechnicaHungarica. Budapest. Volume 12. 2015. IssueNumber 5. pp 71-80.
- 2. Baklanov A. E., Titov D. N., A. Zhaparova Improving the efficiency of led lighting by switching to low-voltage technology. πενατ. International Conference on Industrial Engineering. «Procedia Engineering» (ICIE-2015). Netheriands. 2015. pp. 171 177 0,437.
- 3. 345. Grigoryeva S., Grigoryev Ye., Sayun V., Titov D. Baklanov. A. Analysis energy efficiency of automated control system of LED lighting. IEEE-Евразийская конференция по энергетике, приуроченная к международной выставке ASTANAEXPO—2017 Международная IEEE-Сибирская конференция по управлению и связи (SIBCON—2017) 29—30 июня 2017 г. г. Астана, Казахстан

## 6. ИССЛЕДОВАТЕЛЬСКАЯ СРЕДА

# 6.1 Описание материально-технической базы, необходимой для проведения исследований в рамках Проекта

Для технической реализации проекта имеются необходимый кадровый потенциал и соответствующая материально – техническая база.

Необходимый приборно-аппаратурный и технологический парк, а также вспомогательное оборудование для осуществления исследований имеется.

Лаборатории заявителя имеют достаточные производственные площади, основное оборудование для проведения теоретических и технологических исследований, стартовый запас и реактивов, соответствующие коммуникации.

Все работы по данной теме будут проводиться в лабораториях кафедры «Приборостроения и автоматизации технологических процессов» ВКГТУ им. Д.Серикбаева и военной кафедре ВКГТУ (Таблица 3).

Таблица 3 – Описания материально-технической базы

|     | Таолица 5 — С      | писания матс  | риально-технической базы  |       |           |             |
|-----|--------------------|---------------|---------------------------|-------|-----------|-------------|
| No  | Вид                | Назначение    | Модель и год выпуска      | Ко-во | Состояние | Собствени   |
| п/п | оборудования,      | оборудования. |                           | им.   | (новое,   | oe,         |
|     | прибора, инвентаря | прибора,      |                           | едини | хорошее,  | арендовапи  |
|     |                    | инвентаря     |                           | Ц     | плохое)   | ое (у кого) |
| 1   | Компьютер          | Для работы с  | Intel CHIPSETZ 75 2013 г. | 2     | хорошее   | собственное |
|     |                    | программным   |                           |       |           |             |
|     |                    | обеспечением  |                           |       | *         |             |
| 2   | Монитор            | Для работы    | Samsung17"                | 2     | хорошее   | собственное |

| No  | Вид                                        | Назпачение                        | Модель и год выпуска                                                                                                | Ко-во           |          | Собствени   |
|-----|--------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------|----------|-------------|
| п/п | оборудования,                              | оборудования.                     |                                                                                                                     | ИМ.             | (новое,  | oe,         |
|     | прибора, инвентаря                         | прибора,                          |                                                                                                                     | едини           | хорошее, | арендованн  |
|     |                                            | инвентаря                         |                                                                                                                     | Ц               | плохое)  | ое (у кого) |
|     |                                            | программным<br>обеспечением       | 2013 r.                                                                                                             |                 |          |             |
| 3   | Принтер лазерный                           | Для подготовки<br>отчетов         | Samsung<br>ML 3310 , 2013 r.                                                                                        | 2               | хорошее  | собственное |
| 4   | Сканер                                     | Для подготовки<br>отчетов         | Epson perfection V500 PHOTO, 2013 r.                                                                                | 1               | хорошее  | собственное |
| 5   | Ноутбук                                    | Проведение натурных экспериментов | Notebook Lenovo G510 Ci5 4200M 2014 г.                                                                              | 1               | хорошее  | собственное |
| 6   | Многофункциональн<br>ое устройство         | Для подготовки<br>отчетов         | Canon MF4410,<br>2014 r.                                                                                            | 1               | хорошее  | собственное |
| 7   | Источник питания                           |                                   | MPS – 3,<br>2011 г.                                                                                                 | 3               | хорошее  | собственное |
| 8   | Мультиметр                                 | Для проведения<br>эксперимента    | U-NIT-UT-33.<br>2011 r.                                                                                             | 3               | хорошее  | собственное |
| 9   | Осциллограф<br>цифровой                    | Для проведения<br>эксперимента    | UNI-T.<br>2011 r.                                                                                                   | 3               | хорошее  | собственное |
| 10  | Генератор сигналов                         | Для проведения<br>эксперимента    |                                                                                                                     | 3               | хорошее  | собственное |
| 11  | Ваттметр                                   | Для проведения<br>эксперимента    |                                                                                                                     | 1               | хорошее  | собственное |
| 12  | Люксметр                                   |                                   | LX – 1010B, 2011 r.                                                                                                 | 1               | хорошее  | собственное |
| 13  | Паяльная станция                           |                                   | KADA 852D+ ,<br>2012 r.                                                                                             | 3               | хорошее  | собственное |
| 14  | Основной танк                              |                                   | T-72, 1975, 1977                                                                                                    | 2               | хорошее  | собственное |
| 15  | Боевая машина пехоты                       |                                   | БМП-1, 1980 г., 1984 г.                                                                                             | 2               | хорошее  | собственное |
| 16  | Полковая<br>мастерская                     | Для проведения эксперимента       | ПМ-2-70 № 341393:<br>MPC-AP, 1979 г;<br>MPM-M1, 1976 г.;<br>TA-5, 1979 г.;<br>ЭСБ-4В3, 1976 г.;<br>АДБ-312, 1982 г. | 1 K-T<br>1<br>1 | хорошее  | собственное |
| 17  | Мастерская<br>технического<br>обслуживания |                                   | MTO-80, 1989 r.                                                                                                     | 1               | хорошее  | собственное |
| 18  | Учебная башня                              | Для проведения<br>эксперимента    | УБ-675                                                                                                              | 1               | хорошее  | собственное |
| 19  | Трубка выверки                             |                                   | TB-115                                                                                                              | 1               | хорошее  | собственное |
| 20  | Трубка холодной пристрелки                 | Для проведения<br>эксперимента    | ТХП-7-80, ТХП-7-196                                                                                                 | 2               | хорошее  | собственное |

6.2 В проекте часть научных исследований будут проводиться в лаборатории «лазерно-оптических систем» Новосибирского государственного технического университета. Так же планируется получение консультаций у профессоров Томского политехнического университета (ТПУ) кафедры «Промышленная электроника. Оборудование, имеющееся в данных лабораториях, представлено в таблице 4.

Таблица 4 - Описания материально-технической базы лаборатории Томского

политехнического университета (ТПУ).

| $N_{\underline{0}}$ | Вид                | Назпачение     | Модель и год выпуска               | Ко-во | Состояние | Собствени   |
|---------------------|--------------------|----------------|------------------------------------|-------|-----------|-------------|
| п/п                 | оборудования,      | оборудования,  |                                    | им.   | (новое,   | oe,         |
|                     | прибора, инвентаря | прибора,       |                                    | едини | хорошее,  | арендовани  |
|                     |                    | инвентаря      |                                    | Ц     | плохое)   | ое (у кого) |
| 1                   | Анализатор         | Анализ спектра | Высокочастотный анализатор спектра | a l   | хорошее   | собственное |
|                     | спектра Rohde &    |                | до 3 ГГц.                          |       | *         |             |
|                     | Schwarz FSH18      |                |                                    |       |           |             |

| No  | Вид                                                            | Назначение                | Модель и год выпуска        | Ко-во | Состояние | Собствени   |
|-----|----------------------------------------------------------------|---------------------------|-----------------------------|-------|-----------|-------------|
| n/n | оборудования,                                                  | оборудования,             |                             | им.   | (повое,   | ne,         |
|     | прибора, инвентаря                                             | прибора.                  |                             | едини | хорошее,  | арендовани  |
|     |                                                                | инвентаря                 |                             | Ц     | плохое)   | ое (у кого) |
| 2   | MIGHTEX HRS-                                                   | Получение                 | Спектрометр оптический      | 1     | хорошее   | собственное |
|     | VIS USB                                                        | спектрограммы             |                             |       |           |             |
|     | Spectrometer                                                   |                           |                             |       |           |             |
| 3   | lecroy Ic584al 1ghz<br>4ch digital<br>oscilloscope 2/8<br>GS/s | Получение<br>осциллограмм | Высокочастотный осциллограф | 2     | хорошее   | собственное |

- 6.3 В проекте планируется участие зарубежных ученых:
- Óbuda University, Budapest, Hungary. Совместные работы по направлению проекта имеются. Имеется договор о научно-техническом сотрудничестве.
- Новосибирского государственного технического университета. Имеется договор о научно-техническом сотрудничестве.
- Томского государственного университета систем управления и радиоэлектроники (ТУСУР) кафедры «Промышленная электроника». В рамках совместных научных работ по предлагаемому проекту уже опубликован доклад на международной IEE конференции [9], ведется подготовка по двудипломному образованию в магистратуре. Имеется договор о научно-техническом сотрудничестве.
- Национальный исследовательский Томский политехнический университет, кафедра «Промышленная медицинская электроника». Имеется договор о научно-техническом сотрудничестве.
- Институт военно-технического образования при Омском государственном техническом университете.
  - 6.4 В проекте примут участие 1 докторант, 5 магистрантов.
- **6.5** Планируемые командировки позволят выполнить планируемую работу на международном уровне в соответствии с календарным планом. При нарушении сроков и задач командировок выполнение текущих этапов может быть сорвано. Связь командировок с выполнением проекта 90%.

#### 7.ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ

- 7.1 Осуществление публикаций в зарубежных рецензируемых научных журналах— не менее 2-х публикаций. Примерный список журналов: «ActaPolytechnica Hungarica»; «Proceedings of the IEE»; «Pomiary Automatyka Komputery».
- 7.2 Осуществление опубликования книг/глав в книгах в зарубежных издательствах не менее 1 издания. Ориентировочно:
  - Издательство университета Обуда, г.Бухарест, Венгрия;
  - НИ Томский политехнический университет, г.Томск.
- 7.3 Осуществление опубликования книг/глав в книгах в казахстанских издательствах— не менее 2-х изданий.
  - 7.4 Осуществление опубликования монографий— не менее 1-го издания.
- 7.5 Возможности патентования полученных результатов в зарубежных патентных бюро (европейском, американском, японском) возможно патентование 1-й заявки.
- 7.6 Возможности патентования полученных результатов (в казахстанском или евразийским патентном бюро) не менее 2-х заявок свидетельств о государственной регистрации объектов интеллектуальной собственности.

7.7 Возможность заключения лицензионного соглашения по объекту интеллектуальной собственности, полученного в рамках проекта — при условии выполнения п.5.5 данная возможность будет однозначно реализована.

7.8 Ожидаемый научный и социально-экономический эффект.

В военных частях РК появится новые оптико-электронные конструкции для применения их в танке Т-72, которые позволят повысить точность выверки нулевой линии прицеливания, а лазерная оптико-электронная система тренировочной стрельбы должна снизить объем применения (расход) боеприпасов при проведении учебных (тренировочных) стрельб, что повысит уровень боеготовности Казахстанских войск.

## Ожидаемые результаты:

- 10. Создан образец устройства для выверки нулевой линии прицеливания танка.
- 11. Создан опытный образца лазерной оптико-электронной системы тренировочной стрельбы.
- 12. Создан образец электронной мишени для лазерной оптико-электронной системы тренировочной стрельбы.
- 13. Разработана конструкторская документация опытного образца устройства для выверки нулевой линии прицеливания танка
- 14. Разработана конструкторская документация опытного образца лазерной оптико-электронной системы тренировочной стрельбы и электронной мишени.
- 15. Разработано программное обеспечение управления опытным образцом лазерной оптико-электронной системы тренировочной стрельбы и электронной мишенью.
- 16. Проведены натурные эксперименты и сформулированы рекомендации по использованию нового оборудования.
  - 17. Получение патентов по результатам проекта.
- 18. Публикация в журналах с импакт-фактором, индексируемом в агентстве Thomson Reuters.
- **7.9 Применимость полученных научных результатов** обеспечена полным циклом НИОКР заложенным в план реализации Проекта.
- **7.10 Целевые потребители полученных результатов-** военные части РК, военные кафедры РК.
- 7.11 Возможности для получения прорывных результатов, содержащих риски не рассматриваются, так как исследования в Проекте носят научно-прикладной характер; влияние на развитие науки и технологий обосновано по п. 7.1-7.6, 7.8, 7.9.
- 7.12 Распространение результатов работ среди потенциальных пользователей (военные части, военные кафедры) обеспечено вышеуказанными публикуемыми работами (п. 7.1-7.4); публикациями в республиканских изданиях не менее 3 публикаций, а так же участием в международных и республиканских научно-технических конференциях не менее 3-ти позиций.

# 8. БИБЛИОГРАФИЯ

- 1. Grigoryeva S., Grigoryev Ye., Sayun V., Titov D. Baklanov. A. Analysis energy efficiency of automated control system of LED lighting. IEEE-Евразийская конференция по энергетике, приуроченная к международной выставке ASTANA EXPO-2017 Международная IEEE-Сибирская конференция по управлению и связи (SIBCON-2017) 29–30 июня 2017 г. г. Астана, Казахстан
- 2. Baklanov A., Grigoryeva S., Gyorok Gy. Intelligent control of LED luminaries // 9th International Symposium on Applied Informatics and Related Areas "New Faculty, New Ability!"AIS 2014. Hungary.2014. pp. 87-91.A. Zhaparova, A. Baklanov, D. Titov, G. Gyorok. Study of the Effectiveness of Switching-on LED Illumination Devices and the Use of Low Voltage

System in Lighting // Journal of Applied Sciences Acta Polytechnica Hungarica. — Budapest. Volume 12. — 2015. IssueNumber 5. pp 71-80.

3. Baklanov A., Grigoryeva S., Gyorok Gy. Control of LED Lighting Equipment with Robustness Elements // Acta Polytechnica Hungarica. – Budapest.2016. – v.13, № 5. – pp.105–119.

4.